Suchergebnis für: ** Zeige Treffer 1 - 10 von 1379

Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Simulation, Werkzeug

Prof. Dr. Jürgen Roth

GeoGebra: Funktionen zoomen

Der AK GeoGebra hat einige interaktive Konstruktionen zum Download zusammengestellt. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen. An dieser Stelle geht es um die lokale Näherung von differenzierbaren Funktionen.

Simulation, Werkzeug

Prof. Dr. Jürgen Roth

GeoGebra: Die Ableitung

Der AK GeoGebra hat einige interaktive Konstruktionen zum Download zusammengestellt. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen. An dieser Stelle geht es um die Ableitung einer Funktion.

Simulation, Werkzeug

Prof. Dr. Jürgen Roth

GeoGebra: Parabeln - Graphen quadratischer Funktionen

Der AK GeoGebra hat einige interaktive Konstruktionen zum Download zusammengestellt. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen. Hier geht es um den Einfluss der Funktionsparameter auf die Form und die Lage von Parabeln, den Graphen quadratischer Funktionen.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 1 | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig | A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital “K” nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). “R” ist die regelmäßige Rate die einbezahlt wird, “q” ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein “q”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen potenzieren, Beispiel 4 | A.54.05

Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist “n”. Der Betrag der neuen Zahl ist der alte Betrag hoch “n”. Das neuer Argument (=Winkel) erhält man, indem man das alte Argument mit “n” multipliziert.


Dieses Material ist Teil einer Sammlung