Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 5 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare Ungleichungen, Beispiel 3 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 2 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 4 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen | A.26

Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein “Kleiner-Zeichen” oder ein “Größer-Zeichen” (bzw. “kleiner gleich” oder “größer gleich”). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 1 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 6 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 3 | B.02.04

Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt “Mal rechnen”). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler und ein Nenner, entweder Zähler und Nenner vom gleichen Bruch oder Zähler vom einen und Nenner vom anderen Bruch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 7 | B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung