Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Der Ellipsenbaukasten

Ellipsen der Bauart ax² + bxy + cy² = d können mit Schiebereglern ausprobiert werden.

Video

Havonix Schulmedien-Verlag

Wachstum berechnen | A.07

Es gibt in der Mathematik unendlich viele Wachstumssorten. Vier davon sind so wichtig, dass sie einen Namen erhalten haben: 1. Das lineare Wachstum, 2. Das exponentielle Wachstum, 3. Das begrenzte Wachstum (heißt auch beschränktes Wachstum) und 4. Das logistische Wachstum. Es gibt zwei Möglichkeiten, Wachstumsprozesse zu berechnen. Die einfachste (wenn auch umständlichste) Methode verwendet man in der Schule, so ca. 9., 10. Klasse. Die anderen Methoden (die man in der Oberstufe oder im Studium rechnet), sind in Kapitel A.30 zu finden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen | A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*b^x beschrieben (Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t”, q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen, Beispiel 2 | A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t”, q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beschränktes Wachstum berechnen, Beispiel 3 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geradengleichung über Normalform aus zwei Punkten bestimmen, Beispiel 3 | A.02.11

Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für “x” und “y” in die Geradengleichung: “y=m*x+b” ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit “m” und “b” als Unbekannte). Zieht man die beiden Gleichungen von einander ab (man macht praktisch ein Subtraktionsverfahren vom LGS), erhält man “m” und danach auch “b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen, Beispiel 2 - A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 3 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung