Bild, Simulation, Text

Landesmuseum Karlsruhe,

Tut Anch Amun - ein virtueller Ausstellungsrundgang - Animierter Rundgang durch die Tut Anch Amun-Ausstellung - Karlsruhe 2003

Diese interaktive Seite bietet einen virtuellen Rundgang durch die Ausstellung "Mythos Tut Anch Amun" in Karlsruhe von 2002 bis 2003. Durch Klick gelangen die Besucher zu Ansichten von Grabräumen, Sammlerobjekten des 18. und 19. Jahrhunderts, die die Ägyptenbegeisterung dokumentieren, bis hin zur Tut-Anch-Amun-Manie der 60er Jahre des 20. Jahrhunderts. 360° Ansichten von Ausstellungsstücken runden den virtuellen Rundgang ab. Von der Hauptseite ("zurück"-Link) aus kann auch ein Bericht über die Ausgrabungsarbeiten erreicht werden. Ebenso werden dort die einzelnen Ausstellungsobjekte kommentiert.

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben | A.21

Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 3 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 3 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Maximaler Umfang und minimaler Umfang berechnen, Beispiel 1 | A.21.04

Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand zwischen Funktionen berechnen, Beispiel 1 | A.21.06

Die vermutlich häufigste Variante von Extremwertaufgaben ist der Unterschied zwischen zwei Funktionen. Es geht hierbei um den senkrecht gemessenen Abstand zwischen zwei Funktionen. Man zieht dafür die beiden Funktionen von einander ab (man bestimmt also die Differenzfunktion) und bestimmt davon das Maximum oder Minimum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion mit GTR / CAS berechnen | A.21.08

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt Funktion sieht man in den letzten Jahren häufiger).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben, schwierige Übungen, Beispiel 1 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 3 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung