Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 6 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen spiegeln über Formel, Beispiel 2 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen spiegeln über Verschieben | A.23.05

Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um “-a”, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um “a” zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um “-b”, spiegelt dann an der x-Achse und verschiebt danach die Funktion wieder um “b” zurück. Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so muss man zwei Achsenspiegelungen durchführen: nämlich die Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 2 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 7 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung