Anderer Ressourcentyp

Bildungsbereiche

Allgemeinbildende Schule Sekundarstufe I

Fach- und Sachgebiete

Mathematik

Medientypen

Anderer Ressourcentyp

Lernalter

12-13

Schlüsselwörter

Geraden Koordinaten Schnittpunkt

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Schnittpunkt Gerade-Kugel berechnen, Beispiel 1 | V.06.08

Schnittpunkt einer Gerade mit einem Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es so: Man löst in der Geraden nach x2 auf [bzw. nach y] und dieses in die Kreisgleichung ein. Nun löst man die Klammern auf und kommt auf eine quadratische Gleichung, die man mit der p-q-Formel oder a-b-c-Formel löst. Je nachdem, ob diese keine, eine oder zwei Lösungen liefert, hat man keinen, einen oder zwei Schnittpunkte.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 1b | A.29.2

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 4 | A.22.02

Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt (also den Winkel zwischen Funktion und waagerechter Geraden). Das geht, indem man über die Ableitung zuerst die Steigung im Schnittpunkt berechnet und dann über m=tan(alpha) den Steigungswinkel alpha. 3.Im letzten Schritt rechnet man beide Winkel zusammen (also addieren oder subtrahieren, je nachdem ob die Funktionen steigen oder fallen [Vorzeichen der Steigung betrachten!])


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 4 | A.22.03

Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man die Steigungen beider Funktionen in diesem Punkt (über die erste Ableitung). Danach kann man den Winkel alpha mit der Schnittwinkelformel bestimmen: tan(alpha)=(m2-m1)/(1+m1*m2).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 2 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente an Parabel | A.04.13

Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt “Tangente”. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel kommt Null raus). Wenn tatsächlich nur EINE Lösung für x rauskommt, ist das schon der Beweis, dass die Gerade eine Tangente ist. Der erhaltene x-Wert ist natürlich der x-Wert des Berührpunktes.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkt von Geraden berechnen, Beispiel 2 - A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach "x" auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen, Beispiel 3 - A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung