Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 1 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 3 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 2 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Bild, Simulation, Text

Landesmuseum Karlsruhe,

Tut Anch Amun - ein virtueller Ausstellungsrundgang - Animierter Rundgang durch die Tut Anch Amun-Ausstellung - Karlsruhe 2003

Diese interaktive Seite bietet einen virtuellen Rundgang durch die Ausstellung "Mythos Tut Anch Amun" in Karlsruhe von 2002 bis 2003. Durch Klick gelangen die Besucher zu Ansichten von Grabräumen, Sammlerobjekten des 18. und 19. Jahrhunderts, die die Ägyptenbegeisterung dokumentieren, bis hin zur Tut-Anch-Amun-Manie der 60er Jahre des 20. Jahrhunderts. 360° Ansichten von Ausstellungsstücken runden den virtuellen Rundgang ab. Von der Hauptseite ("zurück"-Link) aus kann auch ein Bericht über die Ausgrabungsarbeiten erreicht werden. Ebenso werden dort die einzelnen Ausstellungsobjekte kommentiert.

Video

Havonix Schulmedien-Verlag

Senkrechte Asymptote berechnen | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Senkrechte Asymptote berechnen, Beispiel 3 | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 5 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 2 | A.17.01

Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.


Dieses Material ist Teil einer Sammlung