Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: So leitet man vermischte Funktionen ab, Beispiel 3 | A.13.07

In den bisherigen Kapiteln haben wir hauptsächlich Polynome (“normale” Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Stammfunktion, Integral und wie man damit rechnet | A.14

Die Stammfunktion einer Funktion braucht man, um diverse Flächen zu berechnen. Bei anwendungsbezogenen Aufgaben ist Stammfunktion meist eine Gesamtmenge (z.B. wenn f(x) die Anzahl von Würstchen beschreibt, die eine Imbissbude verkauft, ist die Stammfunktion die Gesamtanzahl aller Würstchen vom Zeitpunkt A bis zum Zeitpunkt B). Fast jeder Funktionstyp hat andere Regeln zur Bildung der Stammfunktion, d.h. man muss die verschiedenen Regeln für Polynome, Exponentialfunktionen, sin- und cos-Funktionen kennen. Bemerkung: “Stammfunktion bilden” ist mehr oder weniger das Gleiche wie “integrieren” oder “Integral bilden”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 4 | A.14.01

Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 6 | A.14.01

Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: gebrochen-rationale Funktion | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 2 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Periode von trigonometrischen Funktionen berechnen, Beispiel 3 | A.42.01

Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so einfach angegeben werden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 6 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen: Ableitung | A.42.04

Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)


Dieses Material ist Teil einer Sammlung