Video

Havonix Schulmedien-Verlag

Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 2 - A.54.04

Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine "1" steht oder eine andere komplexe Zahl. (Ob es also im eine Kehrwertberechnung geht oder um eine Division).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 - A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 6 - A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum "Addieren" sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum "Multiplizieren" sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 3 | A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital “K” nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). “R” ist die regelmäßige Rate die einbezahlt wird, “q” ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein “q”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 2 | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3

Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also einmal oder öfter) nennt man die Funktion surjektiv (auch rechtseindeutig oder rechtstotal). Wird jeder y-Wert der Funktion genau einmal angenommen nennt man die Funktion bijektiv (auch eineindeutig).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Verkettete Funktionen berechnen | A.52.03

Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als “f nach g von x”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 2 | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 4 | A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung