Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 6 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 1

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 6 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 1 - A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital "K" nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). "R" ist die regelmäßige Rate die einbezahlt wird, "q" ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein "q".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 2 | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Cardanische Formel zur Lösung einer Gleichung dritten Grades, Beispiel 2 - A.54.08

Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich braucht auch kein Mensch die Lösungsformel (grad weil sie so hässlich ist). Aber sie sollen ja nicht dumm sterben (und UNS hat das Filmen Spaß gemacht).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen - A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung