Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Wissenswertes zu Funktionen | A.52

“Diverses” ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine “leichte” Regel für schwere Berechnungen von Grenzwerten. Das dritte Unterkapitel beinhaltet verschachtelte (=verkettete) Funktionen und im letzten Unterkapitel widmen wir uns den tollen Begriffen “injektiv, surjektiv und bijektiv.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 1 | A.53.04

Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ab: 1. ist die Lösung des charakteristischen Polynoms reell oder komplex? und 2. ist die Lösung einfach, doppelt, dreifach...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 - A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: "dy/dx", multipliziert die gesamte Gleichung mit "dx" und versucht nun auch im Folgenden, alle "x" auf eine Seite der Gleichung zu bringen, alle "y" auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante "+c" nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein "x"-Wert und ein zugehöriger "y"-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante "c" bestimmen. Dieses Verfahren nennt sich "Trennung der Variablen" oder "Variablentrennung".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So löst man eine Differentialgleichung DGL, Beispiel 2 - A.53.01

Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl Funktion als auch Ableitung in die DGL einsetzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Differentialgleichung: Was ist eine DGL und wie rechnet man damit? - A.53

Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt "relativ einfach" (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. Spätestens ab Kap.4.3.3 haben wir den Schulstoff verlassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 2

Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also einmal oder öfter) nennt man die Funktion surjektiv (auch rechtseindeutig oder rechtstotal). Wird jeder y-Wert der Funktion genau einmal angenommen nennt man die Funktion bijektiv (auch eineindeutig).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit L'Hospital Grenzwerte bestimmen, Beispiel 7 - A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 1 | A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 5 | A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum “Addieren” sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum “Multiplizieren” sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 3 | A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum “Addieren” sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum “Multiplizieren” sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung