Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Wissenswertes zu Funktionen | A.52

“Diverses” ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine “leichte” Regel für schwere Berechnungen von Grenzwerten. Das dritte Unterkapitel beinhaltet verschachtelte (=verkettete) Funktionen und im letzten Unterkapitel widmen wir uns den tollen Begriffen “injektiv, surjektiv und bijektiv.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp

BR alpha

GRIPS Mathe: Symmetrie - GRIPS Mathe Lektion 25

Zum Thema Symmetrie hat sich Lehrer Basti Wohlrab ein ganz besonderes Klassenzimmer ausgesucht: ein Flugzeugmuseum, das voller Beispiele ist für Achsensymmetrie (Tragflächen), Drehsymmetrie (Propeller) und Punktsymmetrie (Flaggen). Die Schüler lernen, was eine Spiegelachse ist, aber auch, was nicht symmetrisch ist. An den Flugzeugen sind Flächen und Körper symmetrisch, nicht aber das Tragflächenprofil, Buchstabenfolgen wie AHA sind symmetrisch, AGA aber nicht. An einem Rotor erklärt Basti die Drehsymmetrie und mit dem Scherenschnitt in einem doppelt gefalteten Papier gestaltet das Team selbst drehsymmetrische Formen. Die Punktsymmetrie erklärt Basti an Spielkarten. An verschiedenen Flaggen testet das Team dann, ob Symmetrien erkennbar sind.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 3 Texten.

Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Symmetrie

Zum Thema Symmetrie hat sich Lehrer Basti Wohlrab ein ganz besonderes Klassenzimmer ausgesucht: ein Flugzeugmuseum, das voller Beispiele ist für Achsensymmetrie (Tragflächen), Drehsymmetrie (Propeller) und Punktsymmetrie (Flaggen). Die Schüler lernen, was eine Spiegelachse ist, aber auch, was nicht symmetrisch ist. An den Flugzeugen sind Flächen und Körper symmetrisch, nicht aber das Tragflächenprofil, Buchstabenfolgen wie AHA sind symmetrisch, AGA aber nicht. An einem Rotor erklärt Basti die Drehsymmetrie und mit dem Scherenschnitt in einem doppelt gefalteten Papier gestaltet das Team selbst drehsymmetrische Formen. Die Punktsymmetrie erklärt Basti an Spielkarten. An verschiedenen Flaggen testet das Team dann. ob Symmetrien erkennbar sind.