Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 2 | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 2 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden einzeichnen, Beispiel 1 | A.02.01

Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit “b”, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). “m” ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins nach rechts und dann so viel hoch, wie der Wert der Steigung ist. (bei negativer Steigung geht man dementsprechend runter). Beides verbinden und die Gerade zeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden einzeichnen, Beispiel 3 | A.02.01

Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit “b”, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). “m” ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins nach rechts und dann so viel hoch, wie der Wert der Steigung ist. (bei negativer Steigung geht man dementsprechend runter). Beides verbinden und die Gerade zeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer trigonometrischen Funktion erstellen, Beispiel 2 | A.42.09

Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion “beginnt”. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit die Funktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 3

Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der Abstand hiervon zu den Hoch- bzw. Tiefpunkten ist die Amplitude a. Der Abstand zwischen zwei Tiefpunkten oder zwischen zwei Hochpunkten ist die Periode. Daraus kann man b bestimmen. Zum Schluss liest man c aus (welches der x-Wert vom Hochpunkt [bei cos] bzw. der x-Wert des Wendepunkts [bei sin] ist). Die Parameter setzt man in y=a·sin(b[x-c])+d ein.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 1

Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der Abstand hiervon zu den Hoch- bzw. Tiefpunkten ist die Amplitude a. Der Abstand zwischen zwei Tiefpunkten oder zwischen zwei Hochpunkten ist die Periode. Daraus kann man b bestimmen. Zum Schluss liest man c aus (welches der x-Wert vom Hochpunkt [bei cos] bzw. der x-Wert des Wendepunkts [bei sin] ist). Die Parameter setzt man in y=a·sin(b[x-c])+d ein.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer trigonometrischen Funktion, Beispiel 2 | A.42.11

Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte “NEW”-Tabelle ist schneller, funktioniert aber bei manchen Schaubildern schlecht. Das Schaubild einer Stammfunktion zu zeichnen ist ein kleines bisschen umständlicher. Hier ein paar Beispiele zum Ableitung skizzieren und zum Stammfunktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 5 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung