Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 2d | A.29.03

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3d | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Dreiecksfläche berechnen, Beispiel 3 | A.18.08

Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 2a | A.29.03

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 2f | A.29.03

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3f | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen, Beispiel 1 - A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Flächen und Flächeninhalt berechnen | A.03

Fast alle Flächen werden auf Dreiecksflächen zurückgeführt. Wie berechnet man die Fläche eines Dreiecks? Es gibt (wie immer) mehrere Möglichkeiten. Wenn Sie Glück haben, ist eine der drei Seiten parallel zur x- oder zur y-Achse. Dann kommt man recht gut über Standardformel A=½*g*h weiter. Wenn zwar keine der Seiten parallel zu den Koordinatenachsen ist, aber die Koordinaten aller Eckpunkte ganzzahlig sind (keine blöden Kommazahlen), so kann man um das Dreieck ein achsenparalleles Rechteck ziehen und von dieser Rechtecksfläche dann drei rechteckige Dreiecke abziehen. Falls auch das nicht geht, kann man noch die lange Flächeninhaltsformel anwenden oder man bestimmt für die Formel A=½*g*h die Grundlinie und die Höhe über Lotgerade. (Die letzte genannte Variante ist etwas umständlich, wird aber am häufigsten verwendet.)