Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.44.08

Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für “x” den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 2 | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1

Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte Asymptote. Nun setzt man x- und y-Koordinate von irgendeinem gut ablesbaren Punkt ein und erhält so auch noch den Parameter.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 3

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Definitionsmenge bestimmen | A.44.01

Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 2 | A.44.01

Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion ableiten, Beispiel 3 | A.44.02

Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.


Dieses Material ist Teil einer Sammlung