Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 3 - A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man "Barwert" nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann "Endwert" nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft "Zinsfuß" genannt, das gesamte Verfahren; heißt "Methode des internen Zinsfuß" oder "Methode des internen Zinssatzes" oder einfach kurz "IZF" (englisch: "IRR" = "Internal Rate of Return").


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 2 | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 1 - A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man "Barwert" nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann "Endwert" nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft "Zinsfuß" genannt, das gesamte Verfahren; heißt "Methode des internen Zinsfuß" oder "Methode des internen Zinssatzes" oder einfach kurz "IZF" (englisch: "IRR" = "Internal Rate of Return").


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: So löst man Extremwertaufgaben | A.21.01

Meist kann man folgendermaßen vorgehen: man schaut, was überhaupt maximal werden muss (z.B. könnte das eine Dreiecksfläche sein). Die Formel für diese Größe sucht man aus der Formelsammlung raus (z.B. bei der Dreiecksfläche: A=½·g·h). Nun ist das große Ziel, in dieser Formel nur noch EINE Unbekannte drin zu haben. Wie erreicht man das? Man hat immer noch eine weitere Information gegeben (z.B. der Umfang des Dreieck ist gegeben oder ein Eckpunkt liegt auf der Funktion oder...). Diese Information (welche “Nebenbedingung” heißt), verwendet man irgendwie (je nach Aufgabenstellung) und hat dann irgendwann mal die Ausgangsformel (in unserem Beispiel: die Dreiecksfläche) in Abhängigkeit von nur noch einer einzigen Variablen da stehen (Nun heißt diese Formel “Zielfunktion”). Ab jetzt ist es einfach: Ableiten und Null setzen (oder falls man einen GTR/CAS verwenden darf: einfach Maximum bestimmen).


Dieses Material ist Teil einer Sammlung

Simulation, Website

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Wie weit ist der Horizont entfernt?

Wie weit kann man eigentlich auf das Meer hinausschauen? Da die Erde gekrümmt ist, kann man nur bis zu einer Grenzlinie, dem Horizont sehen. Wie berechnet man die Entfernung aber?

Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Ein Goldenes Dreieck

Ein goldenes Dreieck hat besondere Eigenschaften, die in dieser Übung erfahren werden können.

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben | A.21

Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 3 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung