Text

BR alpha

GRIPS Mathe: Lehrer-Informationen für den Unterricht - Der Satz des Pythagoras

Rechte Winkel spielen eine große Rolle in unserem Alltag, das lernen die Schüler von Mathelehrer Basti Wohlrab praxisnah auf einer Baustelle. Bei der Wette, in welcher Höhe eine Leiter an der Wand lehnt, gewinnt Basti mit einer verdächtigen zentimetergenauen Antwort. Schritt für Schritt zeigt ihnen Basti den Trick: Zuerst überlegen die Schüler anhand von Einheitsquadraten, welcher Zusammenhang zwischen den Quadraten über den Seiten eines rechtwinkeligen Dreieckes bestehen. Dann zeigt Basti, wie sich daraus der Satz des Pythagoras ableitet. Mit dem Pythagoras berechnet das Team Flächen und Strecken - und zum Schluss die genaue Anlegehöhe der Leiter.

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Wurzelfunktion erstellen | A.45.07

Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Asymptote und Grenzwert berechnen | A.45.06

Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man das asymptotische Verhalten bestimmt. (Falls x gegen Unendlich läuft und die y-Werte gegen eine Zahl, hat man eine waagerechte Asymptote. Falls x gegen eine Zahl läuft und die y-Werte gegen Unendlich, hat man eine senkrechte Asymptote.)


Dieses Material ist Teil einer Sammlung