Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 4 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 3 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau “n” Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man “n” Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 1 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen lösen, nach x auflösen, Beispiel 4 | A.12.02

Gleichungen auflösen bzw. nach x auflösen: Enthält eine Gleichung einen einzigen Buchstaben “x”, kann man immer nach diesem auflösen, ganz gleich, wie hässlich die Gleichung ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 3 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von “x” ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante “c” durch eine Funktion “c(x)”. Nun setzt man die gesamte Lösung (mitsamt c(x)) in die DGL ein und erhält nach einer Weile die Funktion “c(x)”. (Oft braucht man zwischendrin für die Integration die “Produktintegration” oder “Integration durch Substitution”.)


Dieses Material ist Teil einer Sammlung