Video, Website

BR alpha

Prüfungstipps (Mediabox)

Im fünften Teil gibt Sebastian Wohlrab zunächst einige Tipps, wie man Rechenfehler vermeiden kann Anschließend erklärt er zusammen mit seinem Team, wie man das Ergebnis einer Gleichung übeprüfen kann. Die Mediabox umfasst 12 Stationen: Film: Wie können Fehler vermieden werden?, Film: So kannst du Fehler vermeiden, Info: So vermeidest du Fehler, Film: Wie kann man das Ergebnis kontrollieren?, Übung 1: Mache die Probe, Film: Die Probe, Info: Die Probe, Film: Zusammenfassung, Übung 2: Überprüfe das Ergebnis, Übung 2: Die Probe, Übung 2: Gleichung lösen, Übung 2: Die Probe mit 3.

Video, Website

BR alpha

Prüfungstraining: Dezimalbrüche und Maßeinheiten (Mediabox)

Der vierte Teil führt vor, wie man Dezimalbrüche fehlerfrei addiert oder subtrahiert, und erläutert, was bei Zahlen mit verschiedenen Maßeinheiten zu beachten ist. Die Mediabox umfasst 11 Stationen: Film: Auch Dachboxen werden getestet, Übung 1: Löse die Gleichung nach x auf, Film: Marius macht einen Fehler, Film: So subtrahierst du die Dezimalbrüche richtig, Info: Dezimalbrüche richtig subtrahieren, Film: Maßeinheiten umrechnen, Überlege: Wie viel kg sind 10g?, Film: Auch Profis machen Fehler, Film: Maßeinheiten umrechnen, Übung 2: Berechne das Ergebnis in Gramm, Übung 3: Berechne das Ergebnis in Kilogramm.

Website

BR alpha

Ganze Zahlen (Mediabox)

Im ersten Teil geht es um positive und negative Zahlen. Wie man diese mithilfe einer Zahlengeraden vergleichen kann, wird hier erklärt.Die Mediabox umfasst 21 Stationen:Film: Wetterwarte Hohenpeißenberg, Übung 1: Hast du gut aufgepasst?, Film: Was sind die Bestandteile einer Zahl?, Film: Gegenstände einer Temperaturskala zuordnen, Übung 2: Gegenstände zuordnen, Film: Lösung - Teil 1, Film: Lösung - Teil 2, Info: Zahlengerade, Film: Ganze Zahlen vergleichen, Info: Zahlen vergleichen, Übung 3: Welche Aussagen sind richtig?, Film: Klimadiagramm, Übung 4: Diagramm beschreiben, Film: Beschreibung des Klimadiagramms, Film: Wo liegt eigentlich Riad?, Übung 5: Klimadiagramm von Helsinki zeichnen, Film: Klimadiagramm von Helsinki, Übung 6: Originalwerte eintragen, Film: Vergleich der Temperaturkurven, Film: Berechnung der Temperaturdifferenz, Info: Temperaturdifferenz.

Video, Website

BR alpha

Prüfungstraining: Klammern auflösen (Mediabox)

Im dritten Teil werden Klammern aufgelöst. Wie man einen Faktor vor bzw. hinter einer Klammer mit jedem Glied in der Klammer multipliziert, wird wiederholt. Die Mediabox umfasst 11 Stationen: Film: Crashtest-Dummys, Film: Wie löse ich eine Klammer auf?, Übung 1: Klammer auflösen, Film: Marius macht einen Fehler, Info: Fehler beim Auflösen der Klammer, Film: So wird die Klammer richtig aufgelöst, Info: Klammer richtig auflösen, Film: Gleichung lösen, Info: Zusammenfassung, Übung 2: Gleichung lösen, Lösung zu Übung 2.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Wissenswertes zu Funktionen | A.52

“Diverses” ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine “leichte” Regel für schwere Berechnungen von Grenzwerten. Das dritte Unterkapitel beinhaltet verschachtelte (=verkettete) Funktionen und im letzten Unterkapitel widmen wir uns den tollen Begriffen “injektiv, surjektiv und bijektiv.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp

BR alpha

Prüfungstraining: Bruchgleichungen

Welche schlimmen Folgen kleine Fehler haben können zeigt Mathelehrer Basti Wohlrab seinen Schülern beim Besuch bei den Auto-Unfallforschern. Dabei geht es jedoch nicht ums richtige Fahrverhalten, sondern um die richtige Technik in Mathe-Prüfungen und das Vermeiden typischer Fehler. In diesem ersten Teil geht es um Fehler beim Umgang mit Bruchgleichungen. Basti zeigt, wie man richtig mit Variablen rechnet, mit dem Hauptnenner multipliziert und keine Fehler bei Minus-Zeichen macht.

Anderer Ressourcentyp

BR alpha

Prüfungstraining: Gleichungen

Welche schlimmen Folgen kleine Fehler haben können zeigt Mathelehrer Basti Wohlrab seinen Schülern beim Besuch bei den Auto-Unfallforschern. Dabei geht es jedoch nicht ums richtige Fahrverhalten, sondern um die richtige Technik in Mathe-Prüfungen und das Vermeiden typischer Fehler. In diesem zweiten Teil geht es um Fehler beim Umgang mit Gleichungen. Basti zeigt, wie man Klammern richtig ausrechnet und Gleichungen mit unterschiedlichen Maßeinheiten löst. Auch für einen weiteren häufigen Stolperstein, den richtigen Umgang mit Kommastellen bei Dezimalbrüchen, hat Basti Tipps parat, wie die Schüler einen Mathe-Unfall vermeiden.

Video

Havonix Schulmedien-Verlag

Wurzel von komplexen Zahlen ziehen, Beispiel 1 - A.54.06

Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim Wurzelziehen gibt es immer mehrere Lösungen. Es gibt genau "n" Lösungen. Alle weiteren Lösungen erhält man, in dem man den Vollkreis (also 360° oder 2Pi) durch n teilt. Das Ergebnis zählt man beliebig oft zum Winkel der ersten Lösung dazu, bis man "n" Lösungen hat.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 2 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Partielle Ableitung, Beispiel 7 | A.51.01

Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der “Ableitung” sprechen, denn man muss schließlich präzisieren, ob man nach “x”, nach “y” oder was auch immer ableitet. Also spricht man von der “partiellen Ableitung nach x”, oder der “partiellen Ableitung nach y”, usw. Betrachtet man z.B. die Ableitung nach x (oder “Differenzierung” nach x, wie man es auch nennen kann), wird “x” als Variable betrachtet und alle anderen Buchstaben als Parameter (also als Zahl). Schreibt man sämtliche partiellen Ableitungen übereinander, wird das ein Vektor, der “Gradient” heißt. Die zweiten partiellen Ableitungen kann man der Übersicht halber als Matrix aufschreiben, welche “Hesse-Matrix” heißt.


Dieses Material ist Teil einer Sammlung