Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Anderer Ressourcentyp, Text

Logo creative commons

Projekt PRIMAS, Pädagogische Hochschule Freiburg

Geometrie mit Papierstreifen

Bei dieser Aufgabe geht es darum, verschiedene geometrische Formen zu erforschen. Die SchülerInnen legen zwei Papierstreifen übereinander und betrachten die Formen, die sich durch die Überschneidung ergeben. Experimentell erzeugen die SchülerInnen verschiedene geometrische Formen und untersuchen ihre Eigenschaften wie z. B. die mögliche Parallelität zweier Seiten, Eigenschaften der Diagonalen und Zusammenhänge zwischen Seitenlängen oder Winkelgrößen.

Arbeitsblatt, Text, Unterrichtsplanung

Logo creative commons

learn:line NRW

Themenfeld: Mit GeoGebra die Mathematik dynamisieren

GeoGebra ist eine dynamische Geometriesoftware (DGS) mit integriertem Computeralgebrasystem (CAS) und integrierter Tabellenkalkulation. In diesem Themenfeld wird auf Unterrichtsmaterial rund um GeoGebra verwiesen.

Arbeitsblatt, Bild, Text, Unterrichtsplanung

Projekt PIKAS - TU Dortmund

Expertenarbeit am Beispiel des SOMA-Würfels

In diesem Modul finden Sie eine Basisinformation zur Expertenarbeit aufgezeigt am Beispiel einer Unterrichtsreihe zum SOMA-Würfel sowie passendes Lehrer- und Schüler-Material


Arbeitsblatt, Bild, Text, Unterrichtsplanung, Website

Projekt PIKAS - TU Dortmund

SOMA-Würfel

Nachstehend finden Sie Unterrichtsmaterial, das Sie vor der Einführung des “SOMA-Würfels" (Herleiten der “SOMA-Bausteine", Einheit 6 unter Lehrer- und Schüler-Material) und im Anschluss an eine Reihe zu Aktivitäten mit dem “SOMA-Würfel" (Eigenproduktionen, Einheit 11) einsetzen können


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer ganzrationalen Funktion erstellen, Beispiel 2 | A.46.06

Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als Notlösung in Frage. Sie werden hauptsächlich Fall 2) begegnen. Auch wir werden uns in diesem Unterkapitel dem Fall 2) widmen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 2

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung