Text

Prof. Dr. Jürgen Roth

DynaGeo: Castel del Monte

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Komplexe Division

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

Die Zahl i - phantastisch, praktisch, anschaulich

Wie kann ein geometrisch ausgerichteter Zugang zu den komplexen Zahlen aussehen? Historisch gesehen haben sich die komplexen Zahlen erst wirklich durchgesetzt, als mit der Gaußschen Zahlenebene eine geometrische Interpretation vorlag. Für eine anschauliche Einführung in die komplexen Zahlen für Schülerinnen und Schüler einer 10. Klasse bietet sich ein geometrisch ausgerichteter Zugang an. Ausgangspunkt ist die Fragestellung ob es einen über die reellen Zahlen hinausgehenden Zahlbereich gibt, in dem z. B. die Gleichung x2 = − 1 gelöst werden kann, der den Zahlbereich der reellen Zahlen enthält und in dem die bekannten Rechenregeln weiterhin gültig sind (Permanenzprinzip). Mathematisch gesehen geht es um die Frage, ob die Körperaxiome erfüllt sind und der Körper der reellen Zahlen ein Teilkörper dieses neuen Körpers ist. Die hier verfolgte Idee besteht darin, den anschaulichen, zum Körper der reellen Zahlen isomorphen Körper der reellen Zeiger zu betrachten und ihn auf der anschaulichen Ebene geeignet zu erweitern.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Komplexe Addition

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Komplexe Subtraktion

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Ellipsenkonstruktionen

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Oben offene Schachtel

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Venn-Diagramme

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 2c: Nullstellen berechnen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 2g: Funktion zeichnen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung