Simulation

Logo creative commons

Ulrich Steinmetz, Medienberater Kreis Lippe

GeoGebra: Optimale Flächenaufteilung

2 Nachbarn möchten ihre Grundstücksflächen optimieren, ohne dass jemand dabei benachteiligt wird. Aber wie?

Arbeitsblatt

Siemens Stiftung

Schubsymmetrie - Symmetrie durch Verschieben von Mustern

Arbeitsblatt: Durch Anwendung von Schubsymmetrie auf einfache Grundmuster entstehen Bandornamente und Parkettierungen. Mit diesem Arbeitsblatt werden die wichtigen Merkmale und Begriffe der Schubsymmetrie, z. B. der Elementarabstand, erarbeitet. In vier Aufgaben sollen z. B. Elemente herausgearbeitet oder Symmetrieachsen eingezeichnet werden.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Arbeitsblatt

Lernalter

6-10

Schlüsselwörter

Geometrie Geometrische Figur

Sprachen

Deutsch

Bild

Siemens Stiftung

Symmetrie ist überall

Fotocollage: Symmetrische Gegenstände, wie man sie zuhause und draußen überall sehen kann.Symmetrie ist ein Alltagsphänomen, das, wenn die Schülerinnen und Schüler nur genauer hinsehen, in vielen Dingen ihrer Lebenswelt erkannt werden kann. Auch als Anregung für eigene Erkundungen und Suche nach Symmetrie. Hinweise und Ideen: Der abgebildete Hampelmann ist nicht rein achsensymmetrisch, könnte aber auf den ersten Blick von den Schülerinnen und Schülern so eingeschätzt werden. Das Bild kann als Impuls genutzt werden, um die Schülerinnen und Schüler zu eigenen, achsensymmetrischen Hampelmann-Konstruktionen anzuregen.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Bild

Lernalter

6-10

Schlüsselwörter

Achsensymmetrie Geometrie Geometrische Figur Optik

Sprachen

Deutsch

Anderer Ressourcentyp, Arbeitsblatt

Siemens Stiftung

Mit dem Spiegel rechnen

Rechenaufgabe, interaktiv:Fünf Münzen liegen auf dem Tisch - wie muss der Taschenspiegel platziert werden, damit die Münzenzahl verdoppelt wird? (Und vier andere Aufgaben.) Vorgegeben sind jeweils drei Möglichkeiten, den Taschenspiegel zu positionieren. Die richtige Spiegelposition wird nach Klick auf den Häkchen-Button angezeigt. Gleichzeitig wird ein Foto, das die richtige Lösung zeigt, eingeblendet.


Experiment

Siemens Stiftung

Basteleien mit Achsensymmetrie

Bastelanleitung:Ein- oder mehrfach gefaltetes Papier wird mit der Schere an den Rändern zugeschnitten. Aus bunten Farb- oder Tintentropfen entstehen durch Falten und Pressen reizvolle, achsensymmetrische Klecksbilder.Die durch das Falten entstehenden Falze im Papier sind sichtbare Symmetrieachsen, an denen sich die Muster, ob geschnitten oder gekleckst, spiegeln. Mehrfaches Falten erzeugt mehrfach gespiegelte Muster.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Bild

Siemens Stiftung

Bandornament als Wandschmuck

Foto:Eine Wandbordüre als Beispiel für Bandornamente und Parkettierungen sowie für angewandte Schubsymmetrie in Alltag und Kunst.Wandbordüren wie die im Foto abgebildete findet man in vielen Kinderzimmern. Damit lässt sich der Einstieg in das Thema Schubsymmetrie finden, etwa indem die Kinder berichten, was für Motive die Bordüre in ihrem Kinderzimmer zeigt.

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Bild

Lernalter

6-10

Schlüsselwörter

Geometrie Geometrische Figur

Sprachen

Deutsch

Bild

Siemens Stiftung

Halteverbotsschild (drehsymmetrisch)

Foto: Ein Halteverbotsschild ist ein drehsymmetrisches Motiv.Das bekannte Schild führt zwanglos auf zwei wichtige Merkmale für Drehsymmetrie: Es geht um Drehung (runde Form) und um einen Drehpunkt (angedeutet durch die kreuzenden Linien).

Bildungsbereiche

Elementarbildung

Fach- und Sachgebiete

Mathematik

Medientypen

Bild

Lernalter

6-10

Schlüsselwörter

Geometrie Geometrische Figur

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 1 | A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 2 - A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung