Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Arbeitsblatt, Text, Unterrichtsplanung, Website

Logo creative commons

digital.learning.lab (dll), Institut für Technische Bildung & Hochschuldidaktik, TU Hamburg

Würfelbauten perspektivisch zeichnen (Klasse 5-6)

In diesem Baustein geht es darum, nach Bauplänen Würfelbauten nachzubauen & dann Erfahrungen mit verschiedenen Perspektiven zu machen. In diesem Baustein sollen die Schülerinnen und Schüler verschiedene Sichten auf ein Würfelbauwerk nachvollziehen, selbst Würfelbauten erstellen und perspektivisch zeichnen.

Arbeitsblatt, Text, Unterrichtsplanung, Website

Logo creative commons

digital.learning.lab (dll), Institut für Technische Bildung & Hochschuldidaktik, TU Hamburg

Mathematische Körper in unserer Schule (Klasse 5)

Geometrische Körper und Formen begegnen Schülerinnen und Schülern überall in ihrer Umwelt, wie der Laternenpfahl, der einem Zylinder gleicht oder der Schrank, der einem Quader entspricht. In dieser Unterrichtseinheit fotografieren die Schülerinnen und Schüler Körper und Flächen auf dem Schulgelände und ordnen und vergleichen die Bilder auf einer digitalen Pinnwand (Padlet). Vertiefend betrachten Schülerinnen und Schüler zusammengesetzte Körper sowie Flächen auf Körpern.

Arbeitsblatt, Bild, Text, Unterrichtsplanung, Website

Projekt PIKAS - TU Dortmund

SOMA-Würfel

Nachstehend finden Sie Unterrichtsmaterial, das Sie vor der Einführung des “SOMA-Würfels" (Herleiten der “SOMA-Bausteine", Einheit 6 unter Lehrer- und Schüler-Material) und im Anschluss an eine Reihe zu Aktivitäten mit dem “SOMA-Würfel" (Eigenproduktionen, Einheit 11) einsetzen können

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Versiera der Agnesi (und verwandte Kurven dritter Ordnung)

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaMa: Kreis und Gerade

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Funktionsgraph dynamisch

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Arbeitsblatt, Text, Unterrichtsplanung

Wirtschaft und Schule (www.wirtschaftundschule.de)

Bildung

Das Thema “Bildung” ist ständig in der Diskussion. Aber durchgreifende Fortschritte sind nicht in Sicht. Welche Bedeutung hat die öffentliche (negative) Diskussion für die Betroffenen? Ständig werden die Schüler/innen mit Unmutsäußerungen aus Presse und Wirtschaft konfrontiert. Den Schulabsolventen, ob Hauptschülern oder Abiturienten, mangele es an Kompetenzen und Wissen. In der Unterrichtssequenz wird an das Thema Bildung schülernah herangeführt und auf das zukünftige Modell der Wissensgesellschaft aufmerksam gemacht. Die sensible Konfrontation mit den angeblichen Defiziten der allgemein gebildeten Schüler/innen mündet in die Diskussion um einige mögliche Ursachen des Dilemmas (z. B. zu große Klassen, zu wenig Lehrer). Über die Einschätzung ihrer Kompetenzen und innovative Unterrichtsmodelle (Stichwort Ökonomische Bildung) stoßen die Schüler auf Lösungsansätze im eigenen wie im schulbezogenen Bereich. Besonders geeignet ist diese Unterrichtseinheit für die Klassen 8 und 9 an Real- und Hauptschulen.

Video, Website

BR alpha

Prüfungstipps (Mediabox)

Im fünften Teil gibt Sebastian Wohlrab zunächst einige Tipps, wie man Rechenfehler vermeiden kann Anschließend erklärt er zusammen mit seinem Team, wie man das Ergebnis einer Gleichung übeprüfen kann. Die Mediabox umfasst 12 Stationen: Film: Wie können Fehler vermieden werden?, Film: So kannst du Fehler vermeiden, Info: So vermeidest du Fehler, Film: Wie kann man das Ergebnis kontrollieren?, Übung 1: Mache die Probe, Film: Die Probe, Info: Die Probe, Film: Zusammenfassung, Übung 2: Überprüfe das Ergebnis, Übung 2: Die Probe, Übung 2: Gleichung lösen, Übung 2: Die Probe mit 3.