Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform | A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 1 - A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 4 | A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp, Text

MatheGuru

Scheitelpunktform

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie verschiedene Methoden zur Scheitelpunktform.

Video

Havonix Schulmedien-Verlag

Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 2 - A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 3 - A.04.04

Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann den Scheitelpunkt einfach ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung