Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Experiment

Siemens Stiftung

Basteleien mit Schubsymmetrie

Bastelanleitung:Aus einfachen Grundmustern und der Anwendung schubsymmetrischer Regeln entstehen Bandornamente.Vorgeschlagen wird die Herstellung von Kartoffelstempeln. Die Schülerinnen und Schüler können damit auf einfache Weise am Küchentisch eigene Ornamente herstellen. (Alternativ kann auch ein Stempel-Bastelset verwendet werden.) Eine weitere Variante ist die Arbeit mit transparentem Papier und einem durchgepausten Grundmuster.

Anderer Ressourcentyp

Siemens Stiftung

Wir bauen eine symmetrische Burg

Sachinformation:Mittelalterliche Burgen-Baumeister arbeiteten viel mit symmetrischen Beziehungen. Hier wird Schritt für Schritt die Konstruktion der Burg Castel del Monte (Apulien, Süd-Italien) erklärt.Mit Symmetrie kann man doch Einiges anfangen! Ausgehend von einem Basisquadrat wird der Grundriss der achteckigen Burg nach und nach vervollständigt. Ein 3D-Modell und ein Foto der Burg zeigen das Endprodukt.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrie - was ist das?

Sachinformation:Die Arten von Symmetrie, Beispiele aus dem Alltag, wichtige Kennzeichen für Symmetrie und grundlegende Fachbegriffe zum Thema werden mit einfachen Worten erklärt.Anmerkungen zur Herkunft des Wortes und zur Bedeutung von Symmetrie auch im erweiterten Sinne (Schönheit, Nützlichkeit, Gerechtigkeit) leiten die Betrachtung ein. Dann folgt eine Übersicht der drei Symmetriearten (Achsen-, Dreh- und Schubsymmetrie).

Anderer Ressourcentyp

Siemens Stiftung

Symmetrie

Tafelbild, interaktiv:Einzelmedien zum Thema Symmetrie sind hier in didaktisch sinnvoller Weise für das Unterrichten mit einem interaktiven Whiteboard zusammengestellt. Alle Medien für das interaktive Tafelbild sind in dieser selbstextrahierenden Datei enthalten. Das Tafelbild kann ganz einfach durch Klick auf die ".exe"-Datei gestartet werden. Das Tafelbild besteht aus folgenden Medien:• 1 Grafik als Impulsbild für den Einstieg ins Thema (Titelbild)• 4 Fotos, bzw. Fotocollagen, die Symmetrie im Alltag sichtbar machen.• 2 interaktive Grafiken (Symmetrieachsen finden, Wie Drehsymmetrie entsteht)• 2 interaktive Übungen (Was ist nicht achsensymmetrisch?, Mit dem Spiegel rechnenl)• 3 Experimentier-/Bastelanleitungen (Achsen-, Schub- und Drehsymmetrie)• 2 Sachtexte (Was ist Symmetrie?, Wir bauen eine symmetrische Burg)• 2 Arbeitsblätter mit Lösungen (Schubsymmetrie, Symmetrieübungen mit dem Geobrett)• 1 Linkliste.Hinweise und Ideen:Die Medien, aus denen sich das Interaktive Tafelbild zusammensetzt, sind auch als Einzelmedien auf dem Medienportal der Siemens Stiftung verfügbar.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrieachsen finden

Interaktive Grafik: In sechs Bildern achsensymmetrischer Objekte sollen die Schülerinnen und Schüler jeweils die Symmetrieachse erkennen. Die vermutete Lage der Achse(n) kann auch direkt an der Interaktiven Tafel eingezeichnet werden. Die beiden letzten Motive haben sogar mehrere Symmetrieachsen. Über einen Button kann die korrekte Achsenlage auch auf Klick eingeblendet werden.

Anderer Ressourcentyp

Siemens Stiftung

Symmetrieübungen mit dem Geobrett (Lösung)

Lösungsblatt:Zum gleichnamigen ArbeitsblattHinweise und Ideen:Nähere Informationen finden Sie beim zugehörigen Arbeitsblatt “Symmetrieübungen mit dem Geobrett”, das auf dem Medienportal der Siemens Stiftung vorhanden ist.

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen, Beispiel 1 - A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung