Arbeitsblatt

Siemens Stiftung

Schubsymmetrie - Symmetrie durch Verschieben von Mustern

Arbeitsblatt: Durch Anwendung von Schubsymmetrie auf einfache Grundmuster entstehen Bandornamente und Parkettierungen. Mit diesem Arbeitsblatt werden die wichtigen Merkmale und Begriffe der Schubsymmetrie, z. B. der Elementarabstand, erarbeitet. In vier Aufgaben sollen z. B. Elemente herausgearbeitet oder Symmetrieachsen eingezeichnet werden.

Bild

Siemens Stiftung

Symmetrie ist überall

Fotocollage: Symmetrische Gegenstände, wie man sie zuhause und draußen überall sehen kann.Symmetrie ist ein Alltagsphänomen, das, wenn die Schülerinnen und Schüler nur genauer hinsehen, in vielen Dingen ihrer Lebenswelt erkannt werden kann. Auch als Anregung für eigene Erkundungen und Suche nach Symmetrie. Hinweise und Ideen: Der abgebildete Hampelmann ist nicht rein achsensymmetrisch, könnte aber auf den ersten Blick von den Schülerinnen und Schülern so eingeschätzt werden. Das Bild kann als Impuls genutzt werden, um die Schülerinnen und Schüler zu eigenen, achsensymmetrischen Hampelmann-Konstruktionen anzuregen.

Anderer Ressourcentyp, Arbeitsblatt

Siemens Stiftung

Mit dem Spiegel rechnen

Rechenaufgabe, interaktiv:Fünf Münzen liegen auf dem Tisch - wie muss der Taschenspiegel platziert werden, damit die Münzenzahl verdoppelt wird? (Und vier andere Aufgaben.) Vorgegeben sind jeweils drei Möglichkeiten, den Taschenspiegel zu positionieren. Die richtige Spiegelposition wird nach Klick auf den Häkchen-Button angezeigt. Gleichzeitig wird ein Foto, das die richtige Lösung zeigt, eingeblendet.


Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02

Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. Das Überprüfen in der zweiten Ableitung (“Hesse-Matrix”) geht nach einem vorgegebenen Schema (wird im Hauptfilm erläutert).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen | A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung