Text

Prof. Dr. Jürgen Roth

DynaGeo: Funktionsgraph dynamisch

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Text

Prof. Dr. Jürgen Roth

DynaGeo: Trigonometrie

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Video

Havonix Schulmedien-Verlag

Parabel mit Parameter berechnen, Beispiel 2 - A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum "x" noch ein "t" oder "k" oder …), so spricht man von einer "Parabelschar" (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man "Scharparabel" (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach "x" auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach "t" auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man "Diskriminante"). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Parabel | A.05

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden mit Parameter, Beispiel 3 | A.02.17

Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Geradenschar” (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man “Schargerade” (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Auch wenn es jetzt blöd klingt: wie bei allen Funktionenscharen begegnet man keinen anderen Fragestellungen, als bei den entsprechenden Funktionen oder Geraden ohne Parameter. Es wird nur eine Stufe hässlicher, weil man in jedem Rechenschritt diesen herrlichen, wundervollen und anmutigen Parameter mitschleppt. Und - man muss die mathematischen Theorien sehr gut kennen. Man muss also GENAU wissen, wie man Schritt für Schritt vorgeht, um Nullstellen zu berechnen, Schnittpunkte zu berechnen, Punktproben durchführt, etc.. denn genau die gleiche Abfolge macht man nun auch mitsamt Parameter.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Exponentialfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.41.10.

Normalerweise hat man die gesuchte Funktion in Abhängigkeit von einem (oder mehreren) Parameter gegeben. Man sucht ein paar Punkte, die man gut aus dem Schaubild ablesen kann und setzt die in die Funktion ein. Eventuell man das auch mit Asymptoten machen. Damit sollte man die Parameter erhalten.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1

Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte Asymptote. Nun setzt man x- und y-Koordinate von irgendeinem gut ablesbaren Punkt ein und erhält so auch noch den Parameter.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 4 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung