Suchergebnis für: ** Zeige Treffer 1 - 10 von 1590

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Multiplikation, Beispiel 1 - B.08.04

Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach nachzuvollziehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Subtraktion, Beispiel 1 - B.08.03

Bei der schriftlichen Subtraktion (Minus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, zieht die untere Ziffer von der oberen ab. Ist die obere Zahl kleiner als die untere, denkt man sich 10 dazu und muss von den nächsten Stellen (links) eins mehr abziehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Addition, Beispiel 2 - B.08.01

Bei der schriftlichen Addition (Plus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, addiert Stelle für Stelle. Gibt es einen Überschlag (also mehr als 10), wird die Zehnerziffer mit den nächsten Stellen verrechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner, Beispiel 4 - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner, Beispiel 2 - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 1 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 6 - B.06.03

Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)-log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 1 - B.06.03

Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)-log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: einfache Rechenregeln, Beispiel 2 | B.06.02

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: so einfach kann man den Logarithmus berechnen, Beispiel 4 | B.06.01

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können. Manchmal helfen auch die Logarithmenregeln um den Logarithmus berechnen zu können.


Dieses Material ist Teil einer Sammlung