Suchergebnis für: ** Zeige Treffer 1 - 10 von 2927

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Asymptote und Grenzwert berechnen | A.41.07

Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07

Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Asymptoten von komplizierten Exponentialfunktionen berechnen | A.41.08

Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also waagerechte oder schiefe Asymptoten erhält man wie üblicherweise, indem man x gegen plus und minus Unendlich laufen lässt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Exponentialfunktion erstellen, Beispiel 3 | A.41.09

Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: Rechenbeispiele zur Funktionsanalyse | A.41.11

Ein paar Beispiele von Funktionsuntersuchungen von e-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Periode von trigonometrischen Funktionen berechnen, Beispiel 2 | A.42.01

Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so einfach angegeben werden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Einfache trigonometrische Gleichungen lösen, Beispiel 5 | A.42.02

Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in “Ding” sollte ein “x” drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach “Ding” auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), anschließend kann man meist recht einfach nach “x” auflösen. Bemerkung: Viele Schüler kennen arcsin, arccos, etc.. nur als sin-1, cos-1, etc.. Mathematisch ist das jedoch nicht korrekt (und kann in der höheren Mathematik sogar zu Verwechslungen führen.) Die korrekte Schreibweise geht also über Arcussinus=arcsin, Arcuskosinus=arccos, ..


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 3 | A.42.03

Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man nach sin(...) oder cos(...) auf. 2.Man substituiert das Argument (d.h. Man wendet Substitution an, in dem man das Innere der Klammer “u” nennt). 3.Man bestimmt mittels Taschenrechner oder Wertetabelle einen Wert von “u”. 4.(Der entscheidende Schritt) Bei sin: die zweite Lösung lautet: u2=Pi-u1. Bei cos: u2=-u1. 5.Man resubstituiert, um aus “u1” und “u2” die Werte “x1” und “x2” zu erhalten. 6.erhaltenen x-Werte kann man beliebig oft um je eine Periode nach links oder rechts verschieben (falls das notwendig ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Logarithmusfunktion erstellen, Beispiel 1 | A.44.07

ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung