Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 5 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion von Kurvenscharen | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion von Kurvenscharen, Beispiel 5 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 3 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 8 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben | A.21

Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion mit GTR / CAS berechnen | A.21.08

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt Funktion sieht man in den letzten Jahren häufiger).


Dieses Material ist Teil einer Sammlung