Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Logistisches Wachstum berechnen, Beispiel 1 | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Anderer Ressourcentyp

Planet Schule, SWR

Wie unterscheiden sich Fichte und Tanne?

Ein gutes Unterscheidungsmerkmal sind die Zapfen. Bei der Tanne stehen sie aufrecht auf den Zweigen, bei den Fichten hängen sie von den Zweigen herab und fallen häufig als Ganzes vom Baum. Auch von Weitem lassen sich Tanne und Pfichte unterscheiden. Die Fichte hat einen spitzen Wipfel, während Tannen oben abgerundet sind. Ein weiterer Unterschied liegt darin, dass der Fichtenzweig spitze, pieksende Nadeln trägt und Tannennadeln stumpfer sind und zwei weiße Streifen auf der Unterseite.

Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wurzel ableiten; Brüche ableiten, Beispiel 6 | A.13.02

Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein “x” steht, sondern nur Zahlen und unten weder “+” noch “-”, kann man “x” von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu “x” hoch “ein Drittel”,...)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 4 | A.13.03

Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, …). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit “Mal” verbunden hinten angehängt werden muss.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 6 | A.13.03

Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, …). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit “Mal” verbunden hinten angehängt werden muss.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 4 - A.13.04

Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit "Mal" verbunden sind). In beiden Faktoren sollte die Variable ("x") auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 4 - A.13.05

Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein "x" steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v-u*v')/u134


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beispielaufgaben zu Ableitungen, Beispiel 2 - A.13.06

Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).


Dieses Material ist Teil einer Sammlung