Anderer Ressourcentyp, Text

MatheGuru

Differentialquotient

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie die geometrische Herleitung des Differentialquotienten.

Text

MatheGuru

Beweis für die Ableitung von sin(x)

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle wird der Beweis, dass cos(x) die Ableitung von sin(x) ist, erbracht.

Text

MatheGuru

Beweis für die Ableitung von csc(x)

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird der Beweis, dass -csc(x) · cot(x) die Ableitung des Cosekans ist, erbracht.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01

Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält “b”. Für die fertige Geradengleichung der Tangente setzt man “m” und “b” wieder in y=m*x+b ein.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 4

Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wendetangente und Wendenormale bestimmen, Beispiel 4 | A.15.03

Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 2 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Normale außerhalb, Beispiel 2 | A.15.05

Eine “Normale von außen” oder “Normale von außerhalb” liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Jetzt hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Normale aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beispielaufgaben zu Ableitungen, Beispiel 2 - A.13.06

Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beispielaufgaben zu Ableitungen, Beispiel 5 - A.13.06

Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).


Dieses Material ist Teil einer Sammlung