Video

Havonix Schulmedien-Verlag

Logistisches Wachstum berechnen, Beispiel 2 | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Umsatz, Kosten, Gewinn berechnen | A.33.01

Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der Kostenfunktion, also G(x)=E(x)-K(x).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Fachbegriffe | A.33.03

In der Kostenrechnung gibt es mehrere Begriffe, die für die meisten Leute sehr verwirrend sind. Es geht um Fixkosten, variable Stückkosten, Grenzkosten, Betriebsoptimum, Betriebsminimum, und einiges mehr. Im Großen und Ganzen nicht schwer, jedoch muss man sich die Bedeutung der Begriffe genau einprägen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 3 | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 3 - A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man "Barwert" nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann "Endwert" nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft "Zinsfuß" genannt, das gesamte Verfahren; heißt "Methode des internen Zinsfuß" oder "Methode des internen Zinssatzes" oder einfach kurz "IZF" (englisch: "IRR" = "Internal Rate of Return").


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 1 | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 2 | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 1 - A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital "K" nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). "R" ist die regelmäßige Rate die einbezahlt wird, "q" ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein "q".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung