Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Verschieben, Beispiel 2 | A.23.05

Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um “-a”, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um “a” zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um “-b”, spiegelt dann an der x-Achse und verschiebt danach die Funktion wieder um “b” zurück. Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so muss man zwei Achsenspiegelungen durchführen: nämlich die Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 1 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 6 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 4 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3d | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein “x” stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind “1/x”, “1/x²”,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff “Asymptoten” verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 1 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 4 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 1 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Entfernung berechnen, Beispiel 2 | A.01.04

Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2-x1)^2+(y2-y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch auslesen.


Dieses Material ist Teil einer Sammlung