Video

Landeszentrale für politische Bildung NRW

Globalisierung

Globalisierung heißt: Politik und Wirtschaft können nicht mehr nur national gedacht werden. Die Waren- und Finanzströme fließen weltweit, und deshalb kann der Kauf eines Discount-Kaschmir-Pullovers in Deutschland direkten Einfluss auf das Öko-System der Gobi in der Mongolei haben. Neben den etablierten Finanz- und Wirtschaftsmächten treten immer mehr neue "Global Player" in den internationalen Markt ein. Finanzkräftige Wüstenemirate wie Dubai und neue liberalisierte Wirtschaftsmärkte wie der des riesigen Chinas sind nur zwei der neuen Wettbewerber. Aber kann das weltweite Wirtschaften durch die nationalen Parlamente wirkungsvoll kontrolliert werden? Welche Rolle spielen Organisationen wie G8-Gipfel, WTO und Nato in einem Globalisierungsprozess? Können sich nationale Demokratien zu einer wirkungsvollen "Globokratie" wandeln? WEBVIDEOS Der Kampf um die Goldwolle Handmade in Usbekistan NUR AUF DVD Chongqing - Big Apple im Reich der Mitte Dubai - Wunderland im Wüstensand Globokratie

Video

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Max Planck Cinema - Pflanzliche Abwehr - Fressfeinde ausgetrickst

Pflanzen können vor ihren Fressfeinden nicht davonlaufen. Doch sind sie ihnen wirklich hilflos ausgeliefert? Der Film zeigt exemplarisch am wilden Tabak trickreiche pflanzliche Abwehrstrategien. Die Filmreihe "Max Planck Cinema" zeigt aktuelle Projekte von der vordersten Front der Grundlagenforschung - anschaulich und für jeden verständlich!

Video

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Max Planck Cinema - Wehrhafte Pflanzen - Teil 2

Der gefährlichste Fressfeind des wilden Tabaks ist die gefräßige Raupe des Tabakschwärmers. Sie lebt auf der Tabakpflanze und ist immun gegen die Giftwirkung des Nikotins. Doch wird es dem Tabak zu viel, dann weiß er sich auch gegen sie zu wehren: Er ruft räuberische Wanzen zu Hilfe. Die Filmreihe "Max Planck Cinema" zeigt aktuelle Projekte von der vordersten Front der Grundlagenforschung - anschaulich und für jeden verständlich!

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig, Beispiel 2 | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 1 - A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital "K" nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). "R" ist die regelmäßige Rate die einbezahlt wird, "q" ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein "q".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Umsatz, Kosten, Gewinn berechnen, Beispiel 2 | A.33.01

Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der Kostenfunktion, also G(x)=E(x)-K(x).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Grundbegriffe und wie man damit rechnet | A.33.02

In den meisten Aufgaben ist die Kostenfunktion eine Gleichung dritten Grades, die Erlösfunktion ist eine Ursprungsgerade. Beide haben zwei Schnittpunkte im positiven Bereich. Zwischen den beiden Schnittpunkten fährt das Unternehmen Gewinn ein, außerhalb der Schnittpunkte macht es Verlust. Die beiden Schnittpunkte heißen dementsprechend Gewinnschwelle (oder Nutzenschwelle) und Gewinngrenze (oder Nutzengrenze).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Fachbegriffe, Beispiel 2 | A.33.03

In der Kostenrechnung gibt es mehrere Begriffe, die für die meisten Leute sehr verwirrend sind. Es geht um Fixkosten, variable Stückkosten, Grenzkosten, Betriebsoptimum, Betriebsminimum, und einiges mehr. Im Großen und Ganzen nicht schwer, jedoch muss man sich die Bedeutung der Begriffe genau einprägen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen, Beispiel 3 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung