Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion integrieren bzw. aufleiten, Beispiel 1 | A.45.03

Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Wurzelfunktionen, Beispiel 2 | A.45.04

Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.43.04

Es gibt drei Typen von gebrochen-rationalen Funktionen, die man verhältnismäßig einfach integrieren kann. 1.Funktionen, die im Nenner (unten) kein “+” oder “-” haben. Diese Funktionen kann man aufspalten und dann recht einfach integrieren. 2. Funktionen, die oben nur eine Zahl haben, unten eine Klammer ohne Hochzahl. Die Stammfunktion wird führt man auf den Logarithmus (auf ln(..)) zurück. 3. Funktionen, die oben nur eine Zahl haben, unten eine Klammer mit Hochzahl. Man schreibt die Funktion um, den Nenner schreibt man hoch, in dem die Hochzahl negativ wird. Nun kann man die Funktion integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Exponentialfunktionen, Beispiel 4 | A.41.06

Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 6 | A.18.02

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche zwischen zwei Funktionen berechnen; eingeschlossene Fläche, Beispiel 4 | A.18.03

Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die “Aufleitung” ein und zieht die Ergebnisse von einander ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 4 | A.18.04

Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die Fläche auf. (Meistens.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Uneigentliche Integrale berechnen, Beispiel 2 | A.18.05

Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch “unendlich”. Zur Schreibweise: Normalweise darf man “unendlich” nicht als Integralgrenze hinschreiben. Also schreibt man “u” (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss “u” gegen unendlich laufen und schaut, was denn nun als Ergebnis rauskommt (also eine normale Zahl oder etwa doch Unendlich)?


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Uneigentliche Integrale berechnen, Beispiel 4 | A.18.05

Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch “unendlich”. Zur Schreibweise: Normalweise darf man “unendlich” nicht als Integralgrenze hinschreiben. Also schreibt man “u” (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss “u” gegen unendlich laufen und schaut, was denn nun als Ergebnis rauskommt (also eine normale Zahl oder etwa doch Unendlich)?


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 2 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung