Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 3 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 3 | A.18.07

Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 2 | A.11.01

Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur “Wert der Funktion” in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) | A.11.03

Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere Bedeutung. Setzt man f''(x)=0, erhält man den Wendepunkt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Flächen berechnen bzw. Integral berechnen mit der Stammfunktion F(x) | A.11.04

Fläche berechnen bzw. Integral berechnen: Die Stammfunktion F(x) benötigt man, um eine Fläche oder ein Integral zu berechnen. Die Stammfunktion nennt man auch Flächenfunktion.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wertebereich einer Funktion bestimmen | A.11.06

Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.


Dieses Material ist Teil einer Sammlung