Video

Havonix Schulmedien-Verlag

Brüche kürzen: so kürzt man einen Bruch, Beispiel 6 - B.02.01

Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit Termen rechnen, die keine gleiche Hochzahl und keine gleiche Basis haben, Beispiel 2 - B.03.05

Wenn irgendwelche Terme weder eine gleiche Hochzahl noch eine gleiche Basis haben, so kann man erst Mal nichts machen. Dennoch kann man manchmal tricksen, z.B. in dem man die Basis zerlegt, anders zusammenfasst oder sich sonst irgendwas einfallen lässt. (Dieses haben wir "Zusammenfassen durch Basisangleich" genannt, damit es sich professionell anhört). Manchmal kann man auch tatsächlich nichts machen, dann ist man ein bisschen traurig.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 3

Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 2 | B.03.02

Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 1 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionsanpassung, Beispiel 3 | A.31.02

Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch “s4yx/nhyc” nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein Verbindungsstück glatt verbunden werden sollen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Näherungsverfahren und Näherungslösungen | A.32

Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch einfache Funktionen annähern (mit der Taylorentwicklung).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 2 | A.32.02

Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an der tatsächlichen Nullstelle liegt. Dieses Ergebnis setzt man abermals in die Formel ein und erhält einen noch besseren x-Wert. Das Ganze kann man beliebig oft wiederholen und erhält x-Werte die immer näher bei der tatsächlichen Nullstelle liegen. So ein Verfahren nennt man Iteration. Zwar hat das Newtonverfahren auch ein paar Macken, im Großen und Ganzen ist es jedoch wahrscheinlich das beste und schnellste Verfahren, um Gleichungen zu lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Stetigkeit und Differenzierbarkeit von abschnittsweise definierten Funktionen, Beispiel 5 | A.25.02

Eine Funktion ist “abschnittsweise definiert”, wenn bis zu einem x-Wert eine ganz bestimmte Funktion gilt, ab diesem x-Wert dann eine andere Funktion gilt. Abschnittsweise definierte Funktionen eignen sich hervorragend für Aufgabenstellungen zu Stetigkeit und Differenzierbarkeit.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen | A.26

Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein “Kleiner-Zeichen” oder ein “Größer-Zeichen” (bzw. “kleiner gleich” oder “größer gleich”). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt.


Dieses Material ist Teil einer Sammlung