Simulation, Website

Mathe online.at

Digitale Medien in der Mathematikausbildung - Mathe Online

Das Projekt Neue Medien in der Mathematik-Ausbildung wurde im Rahmen der zweiten Ausschreibungsrunde der Initiative Neue Medien in der Lehre des Bundesministeriums für Bildung, Wissenschaft und Kultur (2001/2) eingereicht und im August 2002 angenommen. Es besteht aus einem Konsortium von 9 (ursprünglich 10) Partnerinstitutionen und begann im September 2002 mit einem am Technikum Kärnten abgehaltenen Kickoff-Meeting. Im Rahmen des Projekts werden Elemente elektronisch unterstützten Lernens in ausgewählte Lehrveranstaltungen an Universitäten, Fachhochschulen und einer Pädagogischen Akademie integriert. Dabei sind sowohl die "reine" Mathematik, als auch Fächer, in denen Mathematik als Hilfswissenschaft dient, beteiligt. Die Hauptziele des Projekts sind, Studierende in der Studieneingangsphase verständnisfördernd zu unterstützen: Integration Neuer Medien in den Vorlesungs- (und Übungs-)alltag Entwicklung dafür benötigter Materialien und Werkzeuge Erprobung technischer Lösungen, die das Abhalten von Live-Ereignissen ermöglichen, auf Eignung hinsichtlich der Kommunikation über mathematische Inhalte Erstellen audiovisueller Vortragssequenzen zu mathematischen Schlüsselbegriffen Besonderes Anliegen ist es, den StudienanfängerInnen der beteiligten Fächer die Bewältigung der neuen Anforderungen, insbesondere den Übergang von der Schulmathematik (AHS/BHS) zu den an Universitäten und Fachhochschulen gelehrten Inhalten, zu erleichtern. Weitere Ziele bestehen darin, die Kompetenz der Lehrenden hinsichtlich der Einsatzmöglichkeiten Neuer Medien zu erhöhen und Hilfestellungen für zukünftige Aktivitäten in diesem Bereich auszuarbeiten. mathe online dient dem Projekt als Web-Platform und wird die entwickelten Materialien und Dokumente (auch in Zukunft) bereitstellen. Die Zusammensetzung des Projektkonsortiums stellt sowohl hinsichtlich der beteiligten Fächer als auch in Bezug auf Rahmenbedingungen, Erfahrungen und Ressourcen ein breites Spektrum dar, das die Entwicklung inhaltlicher, didaktischer, technischer und organisatorischer Innovationen für die Mathematik-Ausbildung als realistische Zielsetzung erscheinen lässt.

Text

Wolfram research

Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau beschrieben. Durch Links wird man zu Begriffen geführt, die eventuell unbekannt sind.

Video

Havonix Schulmedien-Verlag

Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 2 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente an Parabel | A.04.13

Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt “Tangente”. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel kommt Null raus). Wenn tatsächlich nur EINE Lösung für x rauskommt, ist das schon der Beweis, dass die Gerade eine Tangente ist. Der erhaltene x-Wert ist natürlich der x-Wert des Berührpunktes.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 1 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 4 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 2 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln an der x-Achse, an der y-Achse oder am Ursprung, Beispiel 2 | A.23.03

Will man eine Funktion spiegeln, so ist ein Minuszeichen entscheidend. Bei einer Achsenspiegelung an der y-Achse, muss man jede Variable “x” der Funktion durch “-x” ersetzt. Man spiegelt eine Funktion an der x-Achse, indem man vor die Funktion ein Minus setzt (aus “f(x)” wird “-f(x)”). Braucht man eine Punktspiegelung von einer Funktion am Ursprung, so erhält man das durch eine Achsenspiegelung an der x-Achse UND einer an der y-Achse (aus “f(x)” wird “-f(-x)”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen spiegeln über Formel, Beispiel 2 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung