Video

Havonix Schulmedien-Verlag

Parabel: so kann man Parabeln berechnen - A.04

Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, …). Beginnt eine Funktion nicht mit "x²" sondern mit höheren Potenzen, nennt man zwar auch Parabel, aber dann "Parabel höherer Ordnung" oder "Polynom höherer Ordnung" oder "ganzrationale Funktion höherer Ordnung". (Statt "höherer Ordnung" kann man "3.Grades", "4.Grades", .. sagen). Irgendeine Gleichung mit (quadratischen) Parabeln nennt man auch "Gleichung zweiter Ordnung" oder "quadratische Gleichung".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen, Beispiel 1 - A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist "B(0)" der Anfangswert, "B(t)" der Bestand nach Ablauf der Zeit "t", q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen, Beispiel 3 - A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist "B(0)" der Anfangswert, "B(t)" der Bestand nach Ablauf der Zeit "t", q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beschränktes Wachstum berechnen, Beispiel 4 - A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort "Sättigungsmanko". Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel mit Parameter berechnen, Beispiel 4 | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen - A.05.03

Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach "x" auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) negativ, so handelt es sich um einen Hochpunkt. Ist f''(x) positiv, handelt es sich um einen Tiefpunkt.) Setzt man den x-Wert in die Ausgangsfunktion f(x) ein, erhält man den y-Wert des Extrempunkts


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, Hochpunkte und Tiefpunkte kubischer Parabeln berechnen, Beispiel 2 | A.05.03

Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach “x” auf, erhält man die x-Werte Hoch- und Tiefpunkte. Setzt man die x-Werte in die zweite Ableitung ein, erfährt man, ob es sich um einen Hoch- oder um einen Tiefpunkt handelt. (Ist das Ergebnis von f''(x) negativ, so handelt es sich um einen Hochpunkt. Ist f''(x) positiv, handelt es sich um einen Tiefpunkt.) Setzt man den x-Wert in die Ausgangsfunktion f(x) ein, erhält man den y-Wert des Extrempunkts


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, Wendepunkte kubischer Parabeln berechnen, Beispiel 3 | A.05.04

Den Wendepunkt einer Funktion erhält man, wenn man die zweite Ableitung Null setzt und nach “x” auflöst. Den y-Wert erhält man, in dem man x in die Ausgangsgleichung f(x) einsetzt. (Normalerweise muss man den x-Wert auch noch in die dritte Ableitung einsetzen, aber bei kubischen Parabeln [Gleichungen dritten Grades] muss man das streng genommen nicht. Wenn man f''(x)=0 setzt und nach x auflöst, ist das IMMER ein Wendepunkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1b: Nullstellen berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung