Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 2 | A.43.02

Die Ableitung eines Bruchs geht mit der sogenannten “Quotientenregel”. Der Zähler (oben) wird “u” genannt, der Nenner (unten) wird “v” genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten | A.13.04

Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit “Mal” verbunden sind). In beiden Faktoren sollte die Variable (“x”) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 5 | A.13.04

Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit “Mal” verbunden sind). In beiden Faktoren sollte die Variable (“x”) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 5 | A.13.05

Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein “x” steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v-u*v')/u135


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktion / Bruchfunktionen: kurze Einführung | A.43

Bruchfunktionen sind natürlich Funktionen in Bruchform. Tatsächlich heißen sie “gebrochen-rationale Funktionen” oder “gebrochene Funktionen”. Das typische Merkmal dieser Funktionen sind senkrechte Asymptoten (Polstellen), die das Schaubild in zwei oder mehrere Teile aufteilt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02

Die Ableitung eines Bruchs geht mit der sogenannten “Quotientenregel”. Der Zähler (oben) wird “u” genannt, der Nenner (unten) wird “v” genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 3 | A.43.10

Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).


Dieses Material ist Teil einer Sammlung