Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Umkehrfunktion berechnen, Beispiel 1 | A.28.01

Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach “x” auf. Hat man das getan, kann man das bisherige “x” nun “y” nennen, das bisherige “y” nennt man “x” und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen monoton sind.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Umkehrfunktion berechnen, Beispiel 6 | A.28.01

Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach “x” auf. Hat man das getan, kann man das bisherige “x” nun “y” nennen, das bisherige “y” nennt man “x” und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen monoton sind.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 4 | A.28.02

Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte”.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 2 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 2 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 7 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 5 | A.24.03

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein “x” stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind “1/x”, “1/x²”,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff “Asymptoten” verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 2 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 5 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung