Bildungsbereiche

Hochschulbildung

Fach- und Sachgebiete

Medienpädagogik

Medientypen

Anderer Ressourcentyp

Schlüsselwörter

Street View

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Multiplikation, Beispiel 3 - B.08.04

Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach nachzuvollziehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: schriftliche Subtraktion, Beispiel 3 - B.08.03

Bei der schriftlichen Subtraktion (Minus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, zieht die untere Ziffer von der oberen ab. Ist die obere Zahl kleiner als die untere, denkt man sich 10 dazu und muss von den nächsten Stellen (links) eins mehr abziehen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen: Einzeilen-Addition - B.08.02

Bei der schriftlichen Addition gibt es ein paar kleine Tricks, um das Zusammenzählen etwas schneller zu gestalten. Nicht lebensnotwendig, aber manchmal hilfreich.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kopfrechnen auffrischen: Addition, Multiplikation, Subtraktion, Division, Brüche umrechnen - B.08

Tja.. Manchmal holt einen das Kopfrechnen wieder ein, obwohl man dachte, es nie wieder zu brauchen. Wir wiederholen hier die Rechenregeln der gängigen Grundrechenarten, damit Sie sich an das längst vergessene Rechnen ohne Taschenrechner erinnern. Wir wiederholen das "von Hand rechnen" von Addition, Multiplikation, Subtraktion, Division und das Umrechnen von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 2 - A.54.04

Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine "1" steht oder eine andere komplexe Zahl. (Ob es also im eine Kehrwertberechnung geht oder um eine Division).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 - A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 6 - A.54.02

Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum "Addieren" sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum "Multiplizieren" sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in kartesischer Form gegeben sind, umwandeln!). Das Konjugieren von komplexen Zahlen geht in allen Darstellungsformen einfach.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung