Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 6 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 3 | A.22.02

Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt (also den Winkel zwischen Funktion und waagerechter Geraden). Das geht, indem man über die Ableitung zuerst die Steigung im Schnittpunkt berechnet und dann über m=tan(alpha) den Steigungswinkel alpha. 3.Im letzten Schritt rechnet man beide Winkel zusammen (also addieren oder subtrahieren, je nachdem ob die Funktionen steigen oder fallen [Vorzeichen der Steigung betrachten!])


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 1a | A.29.2

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 3 | A.22.03

Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man die Steigungen beider Funktionen in diesem Punkt (über die erste Ableitung). Danach kann man den Winkel alpha mit der Schnittwinkelformel bestimmen: tan(alpha)=(m2-m1)/(1+m1*m2).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkt von Geraden berechnen, Beispiel 1 | A.02.07

Will man zwei Funktionen schneiden, muss man die gleich setzen und nach “x” auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen, Beispiel 2 | A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele | A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 1 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkte zweier Parabeln berechnen, Beispiel 3 | A.04.12

Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt “x²” weg, kann man einfach nach dem verbliebenen “x” auflösen. Bleibt “x²” übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man auch die y-Werte und damit die kompletten Schnittpunkte (bzw. den einen Berührpunkt).


Dieses Material ist Teil einer Sammlung