Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Koordinaten: so kann man eine Koordinate berechnen, Beispiel 1 | A.02.04

Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder …) so liegt der Punkt auf der Gerade. anderenfalls liegt der Punkt nicht auf der Gerade.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Koordinaten: so kann man eine Koordinate berechnen, Beispiel 3 - A.02.04

Wie prüft man, ob ein Punkt auf einer Gerade liegt? Sehr einfach: man macht eine Punktprobe, man setzt die also Koordinaten des Punktes in die Gerade ein. Also den x-Wert des Punktes setzt man für x ein, den y-Wert des Punktes setzt man in die Geradengleichung für y ein. Erhält man zum Schluss eine wahre Aussage (so was wie 0=0 oder 5=5 oder …) so liegt der Punkt auf der Gerade. anderenfalls liegt der Punkt nicht auf der Gerade.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Wurzelgleichungen lösen | A.45.05

Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach “x” auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 3 | A.45.05

Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach “x” auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 2 | A.45.08

Beim Zeichnen von Wurzelfunktionen, ist der “Anfangspunkt” wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter “a” erhält man, indem man einen beliebigen Punkt einsetzt.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 3 | A.45.09

Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung aus P und m über Normalform bestimmen, Beispiel 1 | A.02.08

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für “m” und die Koordinaten des Punktes für “x” und “y” in die Gleichung “y=m*x+b” einsetzen um “b” zu bestimmen. Nun setzt man die Werte für “m” und “b” wieder ein und hat die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung aus P und m über Normalform bestimmen, Beispiel 3 | A.02.08

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für “m” und die Koordinaten des Punktes für “x” und “y” in die Gleichung “y=m*x+b” einsetzen um “b” zu bestimmen. Nun setzt man die Werte für “m” und “b” wieder ein und hat die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10

Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, sprich p-q-Formel oder a-b-c-Formel). Je nach dem, was unter der Wurzel rauskommt, hat man keine/eine oder zwei Nullstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Normalparabel und Scheitelpunkt | A.04.14

Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig (“a” ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die Normalform umwandeln.


Dieses Material ist Teil einer Sammlung