Arbeitsblatt, Text

Logo creative commons

Landeszentrale für politische Bildung NRW

Video-Podcasts für den Unterricht Themen: Medienkompetenz und Grundgesetz.

Das Download-Paket mit ingesamt vier PDF-Dateien enthält Materialien zur Verwendung unserer Video-Podcasts "Recht haben - an der Bordsteinkante" und "Moritz und die digitale Welt" im Unterricht. Neben einer allgemeinen didaktischen Einführung finden Sie hier ausführliche Unterrichtsmodelle und Arbeitsblätter: 1. Für den Unterricht an Hauptschulen zum Podcast "Recht haben" 2. Für den Einsatz an der Sekundarstufe II zu den Podcasts "Recht haben" und "Moritz". Die Materialien wurden von dem erfahrenen Pädagogen Guido Rütten entwickelt, der auch das Medienzentrum in Heinsberg leitet.

Video

Havonix Schulmedien-Verlag

Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 - A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 2 - A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 3 | A.03.03

Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks irgendwo auf dem Rechteck liegen. Nun entstehen außerhalb des gesuchten Dreiecks drei rechtwinklige Dreiecke. 2.Die Flächen dieser rechtwinkligen Dreiecke sind recht einfach zu berechnen. Man zieht diese Flächen von der Rechteckfläche ab und hat den gesuchten Flächeninhalt. Hört sich schlimmer an als es ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 1 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Vierecks berechnen, Beispiel 2 - A.03.05

Um die Fläche eines Vierecks zu berechnen, zerlegt man das Viereck in zwei Dreiecke und berechnet dann den Flächeninhalt der beiden Dreiecke. (Falls es sich beim Viereck um eine Quadrat- oder Rechtecksfläche handelt, geht’s natürlich auch einfacher über Länge mal Breite.) Die meines Erachtens jedoch bessere Variante ist dem Viereck ein achsenparalleles Rechteck zu umschreiben und dann ein paar rechtwinklige Dreiecke (evtl. auch ein Rechteck) abzuziehen. Details: siehe Beispielfilme.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Normalparabel zeichnen, Beispiel 1 - A.04.02

Eine Normalparabel kann man natürlich zeichnen, in dem man eine Wertetabelle erstellt, die Punkte einzeichnet und dann zu einer Parabelform verbindet. (Mit der Methode kann man alle Funktionen und alle Parabeln zeichnen). Geschickter ist es jedoch, den Scheitelpunkt zu berechnen (siehe z.B. Kap.A.04.04) und dann von diesem Scheitelpunkt aus die Normalparabel aus zu zeichnen. Das macht man entweder mit einer Schablone oder man muss halt wissen wie die Form einer Normalparabel aussieht (siehe Beispielfilme). Steht vor dem "x²" ein Minus, ist die Normalparabel nach unten geöffnet, steht von dem "x²" ein Plus, ist sie nach oben geöffnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 2 - A.04.03

Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die "allgemeine Form" oder "Normalform" y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die Nullstellen der Parabel geht. y=a*(x-x1)(x-x2) [hierbei sind x1 und x2 die Nullstellen der Parabel]. Sie sollten die drei Parabelformen beherrschen (vor allem die ersten beiden) und wissen, wie man die eine in die andere umwandelt.


Dieses Material ist Teil einer Sammlung