Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel mit Parameter berechnen, Beispiel 1 | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel mit Parameter berechnen, Beispiel 6 | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, kubische Parabel ableiten, Beispiel 1 | A.05.02

Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach “x” auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von “x” kommt vor, die neue Hochzahl wird eins kleiner. Z.B. wird aus 4x³ beim Ableiten: 4*3x²=12x².


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Wendepunkte kubischer Parabeln berechnen - A.05.04

Den Wendepunkt einer Funktion erhält man, wenn man die zweite Ableitung Null setzt und nach "x" auflöst. Den y-Wert erhält man, in dem man x in die Ausgangsgleichung f(x) einsetzt. (Normalerweise muss man den x-Wert auch noch in die dritte Ableitung einsetzen, aber bei kubischen Parabeln [Gleichungen dritten Grades] muss man das streng genommen nicht. Wenn man f''(x)=0 setzt und nach x auflöst, ist das IMMER ein Wendepunkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 1 - A.05.05

Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und damit die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1d: Wendepunkte berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2d: Tangente berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 - A.06.01

"Polynome" heißen auch "ganzrationale Funktionen" oder "Parabeln höherer Ordnung". Während man unter "Parabel" normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer "Parabel dritten Grades" bzw. "Parabel dritter Ordnung" eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit "Parabel vierter Ordnung" ist eine Funktion gemeint, in welcher x^4 als höchste Potenz auftaucht, usw. Anfangs, wenn diese Funktionen eingeführt werden, interessiert man sich hauptsächlich dafür, woher die Funktion kommt und wohin sie geht. Man lässt also x gegen plus und gegen minus Unendlich laufen und schaut ob die y-Werte nach plus oder minus Unendlich gehen. (Wenn man's mal kapiert hat isses ganz einfach).


Dieses Material ist Teil einer Sammlung