Simulation

Rothländer, Herwig ,

Adjective/Adverb im Englischen - ly or no -ly - Adjective / Adverb in English

Online Übungsseite zum Einsatz von adjectives oder adverbs - vorher eine Seite zum Studieren und Einprägen, dann 8 Onlineübungen; adjective - adverb; exceptions

Simulation

Rothländer, Herwig

am/is/are im Englischen - forms of to be (present tense) - am/is/are in English

Online Übungsseite zu den present tense forms of to be - vorher eine Seite zum Studieren und Einprägen, dann 6 Onlineübungen; am - is - are

Text

Logo creative commons

TACCLE - PDF Version des E-Learning-Handbuchs

Dieses Buch wurde für LehrerInnen geschrieben, die mehr zum Thema E-Learning Wissen möchten und mit der Gestaltung von E-Learning-Materialien für den Unterricht experimentieren wollen. Das Buch ist ein Nachschlagewerk und gleichzeitig ein praktisches Handbuch. Dieses Buch ist für Sie geeignet, wenn: • Sie an E-Learning interessiert sind (oder denken, dass Sie sich dafür interessieren sollten!), • Sie zunehmend das Gefühl haben, dass ein Großteil der Dinge, die Sie zum Thema E-Learning lesen und hören, über den Wissensstand von “gewöhnlichen” LehrerInnen hinausgeht, • Sie sich zwar mit dem Computer auskennen, aber keine/kein Computer-ExpertIn sind (Das heißt, Sie können zwar gut mit Textverarbeitungssoftware, E-Mail-Anwendungen und Tabellenkalkulation arbeiten, aber das wäre auch schon alles), • Sie über Umsetzungsmöglichkeiten verfügen möchten, die über die Erstellung von “PowerPoint”-Präsentationen hinausgehen.

Simulation, Website

Rothländer, Herwig ,

Past Progressive im Englischen - ing-Form Mitvergangenheit - Past Continuous Tense - Past Continuous Tense in English

Online Übungsseite zur Past Continuous Tense- vorher eine Seite zum Studieren und Einprägen, dann 2 Onlineübungen; past tense - ing form; past progressive tense

Simulation, Text

Rothländer, Herwig

Past Perfect Tense im Englischen - Vorvergangenheit - Past Perfect Tense Simple in English

Online Übungsseite zur Vorvergangenheit - vorher eine Seite zum Studieren und Einprägen, dann 6 Onlineübungen; past perfect tense simple

Video

Havonix Schulmedien-Verlag

Steckbriefaufgaben zu Normalparabel und zwei Punkten, Beispiel 1 | A.04.15

Hat man von einer Normalparabel zwei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so beginnt man mit dem Ansatz y=x²+px+q und setzt man die Koordinaten beider Punkte ein. Für jeden Punkt erhält man eine Gleichung. Beide Gleichungen zieht man von einander ab, so dass der Parameter “q” weg fällt und erhält “p”. Setzt man nun “p” in eine der Gleichungen ein, erhält man “q”. Nun “p” und “q” in y=x²+px+q einsetzen und sich über die fertige Parabelgleichung freuen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 2 | A.04.16

Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann “a” berechnen. Im Detail: die Scheitelform lautet y=a(x-xs)²+ys. Die Koordinaten des Scheitelpunkts setzt man für “xs” und “ys” ein, die Koordinaten des anderen Punkts setzt man für “x” und “y” ein. Nun erhält man also “a”. Danach “a”, “xs” und “ys” wieder in die Scheitelform ein und ist fertig. Evtl. kann man die Scheitelform noch in die Normalform der Parabel umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 4 | A.04.16

Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann “a” berechnen. Im Detail: die Scheitelform lautet y=a(x-xs)²+ys. Die Koordinaten des Scheitelpunkts setzt man für “xs” und “ys” ein, die Koordinaten des anderen Punkts setzt man für “x” und “y” ein. Nun erhält man also “a”. Danach “a”, “xs” und “ys” wieder in die Scheitelform ein und ist fertig. Evtl. kann man die Scheitelform noch in die Normalform der Parabel umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Parabel mit drei Punkten, Beispiel 3 | A.04.17

Hat man von einer beliebigen Parabel drei Punkte gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so beginnt man mit dem Ansatz y=ax²+bx+c und setzt man die Koordinaten aller drei Punkte ein. Für jeden Punkt erhält man eine Gleichung. (Oft erhält man aus einer Gleichung schon direkt “c”). Die erhaltenen Gleichungen muss man nun irgendwie so miteinander verrechnen, dass man “a”, “b” und “c” erhält. (Zur Frage WIE das geht, siehe evtl. Kap G.02 und Unterkapitel).


Dieses Material ist Teil einer Sammlung