Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Abschnittsweise definierte Funktionen, zusammengesetzte Funktionen bestimmen, Beispiel 3 | A.18.09

Zusammengesetzte Funktionen (oder auch: abschnittsweise definierte Funktionen) bestehen aus zwei (oder mehreren) Funktionen. In bestimmten Bereichen gilt dabei die eine Funktion, im anderen Bereich gilt die zweite Funktion. Im Prinzip braucht man nun zwei Integrale, eines für jede Funktion.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 1c: Nullstellen berechnen | A.19.01

Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvendiskussion Beispiel 2g: Funktion zeichnen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 5: Funktion mit Parameter | A.19.05

Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 5e: Wendepunkte (Hochpunkt, Tiefpunkt) berechnen | A.19.05

Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mehrdimensionale Funktion: kurze Erklärung | A.51

Funktionen müssen natürlich nicht zwingend nur von einer Variablen abhängen (also nur von “x”). Eine Funktion kann auch mehrere “x-Werte” haben, sie heißen dann auch “mehrdimensionale Funktionen”. Diese x-Werte heißen dann entweder x, y, z, .. oder “x1”, “x2”, “x3”, … Meist interessiert man sich nun für Extrempunkte, Tangenten (die nun aber keine Gerade sind, sondern eine Tangentialebene (!) oder sonst was). Wir werden ableiten (das heißt dann nach den verschiedenen, mehreren Variablen “partiell ableiten”), für die Extrempunkte werden wir die ersten Ableitungen Null setzen,... die Details sehen wir dann in den Unterkapiteln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 4 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Annuitätenrechnung und Tilgungsrechnung: so berechnet man Annuitäten richtig | A.55.03

Nimmt man einen Kredit auf, den man natürlich tilgen will, setzt sich das aus einer Zinseszinsrechnung und einer Rentenrechnung zusammen. Die Formel für die Berechnung des Endkapitals lautet: K(n)=K(0)*q^n-R*(q^n-1)/(q-1). K(n) ist das Endkapital, K(0) der anfängliche Kredit, R die regelmäßige Rate (=Annuität) und für q gilt q=1+p/100. (Bemerkung: Die Formel ist auch als “Sparkassenformel” oder “Investitionsrechnung” bekannt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 3 | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung