Video

Havonix Schulmedien-Verlag

Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 5 | A.14.06

Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion auftauchen (nicht unten im Nenner). Nun substituiert man die Klammer als “u”, das “dx” am Ende des Integrals ersetzt man durch: “du / u'”, wobei u' die Ableitung der Klammer ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 8 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 10 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Substitution von Termen in Gleichungen, Beispiel 2 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Substitution von Termen in Gleichungen, Beispiel 7 | A.12.06

Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch “u”, den anderen durch “u²” und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, um wieder “x” zu erhalten. Das typische Beispiel für Substitution ist eine Gleichung, in welcher “x^4”, “x^2” und eine Zahl ohne “x” vorkommen. (Dieser Typ von Gleichung heißt: “biquadratisch”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 2 | A.42.03

Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man nach sin(...) oder cos(...) auf. 2.Man substituiert das Argument (d.h. Man wendet Substitution an, in dem man das Innere der Klammer “u” nennt). 3.Man bestimmt mittels Taschenrechner oder Wertetabelle einen Wert von “u”. 4.(Der entscheidende Schritt) Bei sin: die zweite Lösung lautet: u2=Pi-u1. Bei cos: u2=-u1. 5.Man resubstituiert, um aus “u1” und “u2” die Werte “x1” und “x2” zu erhalten. 6.erhaltenen x-Werte kann man beliebig oft um je eine Periode nach links oder rechts verschieben (falls das notwendig ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Höhere Gleichungen lösen, Beispiel 3 | G.05.03

Wie wir bereits vorher bereits erwähnten, gibt es drei Möglichkeiten eine Gleichung zu lösen: 1. “x” ausklammern, 2. a-b-c-Formel/p-q-Formel, 3. Substitution. (Es gibt noch eine vierte Möglichkeit: die Polynomdivision, die ist an dieser Stelle relativ unwichtig). Wir werden hier die schlimmsten Gleichungen des Universums in Nullkommanichts lösen. Wir machen sie platt. Wir machen die Gleichungen hier so klein, dass die glauben, sie wären keine Gleichungen sondern kleine Abwaschlappen vom Pizzaservice. WIR SIND DIE GLEICHUNGSTOTMACHER!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 3 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung